
Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Computation Operations on an Encrypted Relational

Database Utilizing Homomorphic Properties of

Paillier’s Algorithm
For CRUD Operations and Addition

Tafia Alifianty Dinita Putri / 18218038

Program Studi Sistem dan Teknologi Informasi

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: tafiaalifianty@gmail.com

Abstract— Currently data security is a problem, especially for

data stored on servers that do not belong to them. Encryption is a

way to keep that data safe. However, one of the shortcomings of

encrypted data is that it is difficult to compute the stored data

because the data must be decrypted first. The paillier algorithm

is one of the public-key cryptographic algorithms that have

homomorphic properties that support the operation of encrypted

data without decrypting it first. This paper will discuss how to

apply paillier algorithms to relational database encryption that

allow operations to be performed on these databases.

Keywords—paillier; database; operation; encryption;

decryption

I. INTRODUCTION

The digital era allows humans to store files not in physical

form anymore but in digital form. These files can be stored on

storage media such as hard disks, CDs, DVDs, Flash drives, or

in the cloud. Besides being easy to store data in digital form it

is also cheap compared to storage in physical form.

Even though it has many advantages, storage in digital form

will certainly have security risks such as data theft and data

integrity risks. The solution to overcome this problem is to use

encryption on the data. What if we have important data that is

encrypted and stored on a server, then we want to compute the

data.

For example, a company has monthly sales data stored on a

rented server and the data is very confidential so it is

encrypted. Then at one point, the company wanted to know the

total sales of its company for the last 12 months for its business

analysis. The company must decrypt the data on the server by

sending the key first so that it can be decrypted and then it can

calculate the total sales. Of course, this has a big risk because

there could be certain parties who intercepted the delivery of

the company's keys.

One solution to this problem is to perform operations on

encrypted data so that no key delivery is made to the server.

The company's total sales will be calculated in encrypted form.

The encrypted total sales will then be sent from the server to

the client and then decrypted on the client-side. This method is

possible by using the paillier algorithm because the paillier

algorithm has additive homomorphic properties.

This paper will discuss how to apply homomorphic

properties to paillier algorithms to perform computational

operations on encrypted databases. These operations are read,

insert, delete, update, and addition operations.

II. BASIC THEORY

A. Public key Cryptographic Algorithms

Public-key cryptographic algorithms are cryptographic

algorithms that use different keys to encrypt and decrypt

messages. The public key is used to encrypt messages and the

private key is used to decrypt messages. The public key

cryptography scheme can be seen in Figure 1.

Figure 1. Schematic of public-key cryptographic algorithms

B. Paillier Algorithm

Paillier's Algorithm is a public key cryptographic algorithm

that uses a probabilistic symmetric algorithm. This algorithm

was invented by Pascal Paillier in 1999. Paillier's algorithm is

based on the difficulty of calculating the nth class residue or

the so-called composite residuosity problem. An integer z is

said to be the nth residue of modulo n² if there is an integer y

so z = yᵑ mod n² [1].

To generate the key pairs in the Pailier Algorithm, here are

the steps that must be done:

1. Choose two prime numbers p and q that fulfill the gdc

conditions (pq, (p – 1) (q – 1)) = 1

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

2. Calculate n = pq and λ = l cm (p – 1, q – 1)

3. Select any integer g, with g < n²

4. Calculate µ = (L (gᵞ mod n²))ˉ¹ mod n

With function L is L(x) = .

The result of the above steps is a public key in the form of

pair g, n, and a private key in the form of pair λ, µ.

The encryption process in the Pailier Algorithm is done

with the way:

1. Divide plaintext into small blocks so the value of each

plaintext block is less than n.

2. Choose r integer where r < n.

3. Encrypt every block with the formula

c = gᵐ rᵑ mod n²,

with m is the plaintext block.

 Then, the description process in the Paillier Algorithm is

done with the way:

1. Describe every ciphertext block with formula

m = mod n, or

m = L (cᵞ mod n²).µ mod n

2. Combine plaintext blocks into a complete message.

C. Paillier's Homomorphic Properties for Addition

Paillier Algorithm is a cryptographic algorithm that has

homomorphic properties and also one of the homomorphic

encryption algorithms [2].

Homomorphic encryption is a form of encryption that

allows computation on the ciphertext without describing the

ciphertext firstly. An operation performed on ciphertext that

used homomorphic encryption will produce ciphertext which

if described will make the same results with the similar

operation on plaintext [4].

Mathematically, a homomorphic cryptosystem is a

cryptosystem that used an encryption function that is

homomorphic and allows the operation of the ciphertext to be

carried out. There are two main types of operations namely

addition and multiplication.

A cryptosystem is said to be additive if and only if:

∃△: Ꜫ(x1) △ Ꜫ(x2) = Ꜫ(x1 + x2)

With x1 and x2 is plaintext, Ꜫ is encryption function, and

△ is an operation that depends on properties of the encryption

algorithm used. Then, a cryptosystem is said to be

multiplicative if and only if:

∃△ : Ꜫ(x1) △ Ꜫ(x2) = Ꜫ(x1.x2)

Paillier is an algorithm that had additive properties

(addition). With multiplied two kinds of Paillier ciphertext so

the description result will equivalent with added two values of

the plaintext [2].

Additive properties of the Paillier Algorithm can be proven

like this. Example: a and b are two kinds of plaintext, then c1

and c2 are ciphertexts from each of a and b with ElGamal

encryption and g, y is the pair of the public key so:

c1 = gᵅr₁ᵑ mod n²

c2 = gᵇr₂ᵑ mod n²

With multiplied c1 and c2 will get the result:

c1.c2 = gᵅr₁ᵑ.gᵇr₂ᵑ mod n²

= (r₁r₂)ᵑ mod n²

When the description is done, then:

d((r₁r₂)ᵑ) = a + b

So, d(c1.c2) = a + b.

D. Relational Database

The Relational Data Model is a database model that uses

two-dimensional tables, which consist of rows and columns to

describe a data file. This model shows how to physically

manage/organize data in secondary memory, which will also

have an impact on how we classify data and form all related

data in the system we create.

In a relational database, data is stored in the form of a two-

dimensional relationship or table, and between one table and

another there is a relationship, so it can be concluded that the

database is a collection of several tables that are interrelated.

The collection of data organized as tables is stored in the form

of electronic data on the computer hard disk and logically

grouped according to the user schema [3].

E. JavaScript

JavaScript is a programming language used for creating

and developing websites to make them more dynamic and

interactive. JavaScript can increase functionality on web

pages. Even JavaScript can also create applications, tools, or

even games on the web.

Technically JavaScript or what is commonly called JS is

an interpreter-type programming language, what is meant by

an interpreter is a type of programming language that does not

require a compiler to run it. JavaScript has features such as

object-oriented, client-side, high-level programming, and

loosely typed.

Javascript is a programming language that can also be used

to execute complex algorithms and data logic. there are also

some advantages of javascript compared to other

programming languages. Among others:

• General Purpose

Along with development, Javascript can now be used

as a backend for application development purposes on any

platform outside of the browser used. with NodeJs,

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Javascript can now be used for desktop, console, mobile,

IoT, gaming, application development.

• Easy to Learn

Each programming language has a different level of

difficulty. The level of difficulty can be seen from several

factors. syntax or writing is one of the most important

factors to learn. The program code required by JavaScript

to execute a function or command is relatively shorter

when compared to other programming languages. As an

example :

C++

 #include <iostream>

 int main()

 { std::cout << "Hello, world!\n";

 return 0; }

Java

 class AppHelloWorld {

 public static void main(String[] args)

{
 System.out.println("Hello World!");
 }
 }

JavaScript

 console.log('Hello World!')

The code above is the code to display the same

screen “Hello World!”.

• Community Support

This is one of the reasons JavaScript is loved by

many developers. Support from the community is

important in choosing a programming language. An

example of the advantage of good community support is,

if a bug is found, it will be easier to find a solution in one

application or web because support from the community

or group helps solve the problem.

• Most Popular Languages

Being one of the most popular languages today, with

the implementation of JavaScript in various applications

and large websites such as Facebook, Linkedin, Trello,

medium, and google.

F. MySQL

MySQL is a database management system (database

management) using the basic command of SQL (Structured

Query Language) which is quite well known. This multi-user

and multi-flow MySQL database management system

(DBMS) has been used by more than 6 million users

worldwide. MySQL is an open-source DBMS with two license

forms, namely Free Software (free software) and Shareware

(proprietary software with limited use). So MySQL is a free

database server with the GNU General Public License (GPL)

so that it can be used for free without having to pay, whether

used privately or commercially.

MySQL is included in the RDBMS (Relational Database

Management System) type. Therefore, terms such as rows,

columns, tables, are used in MySQL. For example, in a

MySQL database, there are one or more tables. SQL itself is a

language used in data retrieval in relational databases or

structured databases. So MySQL is a database management

system that uses the SQL language as the language of liaison

between application software and the database server.

Despite being a fairly popular database, MySQL certainly

has several advantages and disadvantages compared to other

database servers. One of the drawbacks of MySQL is that its

performance drops when some database management systems

can perform well on large database management. As for the

advantages of MySQL, such as:

• Supports Integration With Other Programming

Languages

Website or software is sometimes developed using a

variety of programming languages, MySQL can help to

develop software that is more effective and easier for

integration between programming languages.

• Doesn't Require Large RAM

MySQL can be installed on servers with small

specifications. MySQL can still be used on servers with a

capacity of 1 GB.

• Multi-User Support

MySQL can be used by several users at the same

time without making it crash or stop working. can be used

when working on a team project so that the entire team

can work at the same time without having to wait for

other users to finish.

• Open Source

MySQL is a free database management system. Even

though it's free, it doesn't mean that this database has bad

performance. Moreover, the free license used is the GPL

under Oracle management, so the quality is good.

• Flexible Table Structure

MySQL has a table structure that is easy to use and

flexible. For example, when MySQL processes ALTER

TABLE and so on. When compared to other databases

such as Oracle and PostgreSQL, MySQL is classified as

easier.

• Various Data Types

Another advantage of MySQL is that it supports

various kinds of data that you can use in MySQL. For

example float, integer, date, char, text, timestamp, double,

and so on.

• Guaranteed Security

Open source doesn't mean MySQL provides bad

security. On the contrary, MySQL has pretty slick

security features. There are several layers of security

implemented by MySQL, such as the hostname level, and

the subnet mask. In addition, MySQL can also set user

permissions with high-level password encryption.

III. IMPLEMENTATION DESIGN

In implementing this encrypted database, only the values in

the database records are encrypted, the schema and column

names in the database are not encrypted. Encryption can be

done on records in each column or only in certain columns.

Keep in mind that the entire encryption and decryption process

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

is only done on the client-side, no encryption or decryption

process is done on the server-side. This is done to ensure the

security of data when sending and while on the server.

There are five operations on the database that will be

implemented, namely read, insert, update, delete, and addition

operations.

A. Read Operation

This operation is an operation to read records from the

database. Because the records from the database are stored in

encrypted form, to read the database, it is necessary to read the

data using the select command in SQL first. After decrypting

the encrypted data.

B. Insert Operation (Create)

 Insert operation is used to insert a record into the database.

Because the data stored in the database record is encrypted, the

data must first be encrypted using a public key and then

insertion is carried out with the insert command using SQL.

C. Update Operation

An update operation is an operation that changes the data in

a record. This operation is performed almost the same as insert,

namely by first encrypting the data and then updating it with

ordinary SQL commands.

D. Delete Operation

The delete operation is an operation that deletes specific

records in a table. This operation can be done without

encrypting the data first if the conditions for doing the delete

are not affected by the encrypted data. But if the conditions for

doing a delete are influenced by encrypted data, the data must

be encrypted first and then delete with ordinary SQL

commands.

E. Addition Operation

This operation performs the sum of the values in the

encrypted column. This operation is performed by utilizing the

homomorphic nature of the paillier algorithm. The addition is

done by the homomorphic nature of the Paillier algorithm,

namely by multiplying the values of two encrypted data. This

operation can be performed on the server-side because it does

not involve any encryption or decryption processes.

IV. IMPLEMENTATION OF RESULTS ANALYSIS

Simultaneously with the writing of this paper, a simple

website program was implemented using the PHP and

JavaScript programming languages to perform CRUD

operations and addition on a simple database. The database has

several tables, but in the experiments we conducted, the

encryption was only done on one of my tables, namely the

sales table. The sales table itself has several columns, namely

the id column, date column, and total sales column.

Following will be displayed some of the pages contained in

this simple program. This simple web-based program consists

of several interface pages such as a sales list page, a sales data

add a page and a sales data update page.

Figure 2. Start page

 Figure 2 shows the start page of this simple program. There

is a table that shows the data that has been stored in the

database and there are also several buttons with their respective

functions. The add data button is used to add data to the

database. The update button functions to change data that has

been stored in the database and the delete button functions to

delete data that is already in the database. The sales table

displays the data name, id, date of sale, as well as encrypted

sales amount.

Figure 3. Add data page

 Figure 3 shows the add data page. This page serves to fill in

the data required for filling in the data in the sales table.

Several fields must be filled first, such as name, the value of

goods, and data requirements for encryption. The steps for

filling in the data will be explained as follows:

1. Fill in the name

2. Fill in the Price Value

3. Select the Key Length to use for encryption

4. Press the "generate keypair" button

5. Press the "encrypt" button

6. Press the "Calculate [A + B]"

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

7. Enter the value that will be used for the multiplier as

encryption needs

8. Press the "Calculate [(A + B) * C]" button

9. Press the button "Save to Database"

After performing the steps above, the data is stored in the

database and will return to the first page. It can be seen that the

data has been added to the table on the first page. In adding

data, the total sales will be encrypted before entering the

database and you will be able to see the details when you press

and go to the update page.

Figure 4. Data update page

 Figure 4 shows the data update page. This page serves to

change the data needed to replace the data in the sales table. On

this page, you can change some data also re-encrypting it with

a different key.

Figure 5. Paillier Method Test page

Figure 5 shows the Paillier Method Test page. This page

serves to test the paillier method used to encrypt this program.

This page also indicates the time required to perform

encryption and decryption steps. Encryption is carried out by

sequential steps starting from selecting the key bit length,

entering plaintext, adding plaintext, to the last decryption

process.

Experiments were carried out with different key lengths,

namely 32 bits, 64 bits, 128 bits, 256 bits, 512 bits, and 1024

bits. The first experiment was conducted to see the speed of

encryption and decryption of messages based on a certain key.

The results of these experiments can be seen in Table 1. Based

on the experimental results, the results show that the time for

encryption and decryption of messages is proportional to the

length of the key used. Then the length of the key is doubled

causing the computation time to be quadrupled.

Table 1. The results of encryption and decryption experiments

No. Key

Size

Encryption Time

(ms)

Decryption Time

(ms)

1 32 1 1

2 64 1 1

3 128 2 2

4 256 2.5 2.5

5 512 4 4

6 1024 8 8

 In the addition operation experiment, the ciphertext is

added based on the homomorphic nature of the paillier

algorithm (the ciphertext is multiplied). This operation is

performed on 100 records in the sales column with a plaintext

value range of 20 to 1000. The operation is repeated for

different key lengths. The results of these experiments can be

seen in Table 2.

 Based on these experiments, it can be seen that the

decryption of the homomorphic sum of the ciphertext produces

the same result as the sum of unencrypted data. Meanwhile, the

operating performance shows that the required operating time

is proportional to the size of the key used. This is because the

size of the ciphertext will also be doubled so that the operation

time will also increase almost twice.

Table 2. The experimental results of the addition operation

No. Key

Size

Time

(ms)

Amount

(Results of

the

Program)

Actual

Amount

Information

1 32 5 6229 6229 Succeed

2 64 5 6229 6229 Succeed

3 128 6 6229 6229 Succeed

4 256 10 6229 6229 Succeed

5 512 18 6229 6229 Succeed

6 1024 38 6229 6229 Succeed

 In read, insert, and update operations, the operating speed is

affected by the length of the key used. The results of the read,

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

insert, and update operation experiments respectively can be

seen in Table 2, Table 4, and Table 5. From these tables, it can

be seen that the longer the key used, the longer the time to

operate will be. This is because the size of the ciphertext will

also be longer or the size of the data will be bigger so that the

time to query select, insert and update to the database will be

even longer. Then the read, insert and update operations are

also affected by the time to encrypt and decrypt data. In the

delete operation, there is no encryption process or speed to

delete the database. The results of the experiment can be seen

in Table 6. In Table 6, it can be seen that the speed of the delete

operation is not affected by the length of the key used. This is

because, during the deletion process, the database only needs to

know the location where the record to be deleted is stored and

then deletes the pointer to the record.

Table 3. The experimental results of the read operation

No. Key

Size

Time (ms) Time + decrypt (ms)

1 32 1 1.93

2 64 1 1.95

3 128 1 2.11

4 256 1 2.8

5 512 1 5.8

6 1024 1 17.8

Table 4. Experimental results of insert operations

No Key

Size

Time (ms) Time + encrypt (ms)

1 32 30 30.13

2 64 33 33.15

3 128 34 34.31

4 256 55 56

5 512 53 57

6 1024 60 76

Table 5. The experimental results of the update operation

No Key

Size

Time (ms) Time + encrypt (ms)

1 32 1 1.13

2 64 1 1.15

3 128 1 1.31

4 256 2 3

5 512 5 9

6 1024 9 25

 In the delete operation, no encryption or decryption process

is carried out so that the speed of the operation is only affected

by the speed to delete to the database. The results of the

experiment can be seen in Table 6. In Table 6, the speed of the

delete operation is not affected by the length of the key used.

This is because, during the deletion process, the database only

needs to know the location where the record to be deleted is

stored and then deletes the pointer to the record.

Table 6. The experimental results of the delete operation

No. Key Size Time (ms)

1 32 39

2 64 60

3 128 54

4 256 39

5 512 41

6 1024 31

 The key generation code is written in the javascript code

syntax below. In generating keys, the GenerateKey() function

is used to generate keys according to the desired key length.

Random function. SecureRandom() is used to generate any

integer between 1 and 𝑛2 - 1.

paillier = {

publicKey: function(bits, n) {

 // bits

 this.bits = bits;

 // n

 this.n = n;

 // n2 (cached n^2)

 this.n2 = n.square();

 // np1 (cached n+1)

 this.np1 = n.add(BigInteger.ONE);

 this.rncache = new Array();

},

privateKey: function(lambda, pubkey) {

 // lambda

 this.lambda = lambda;

 this.pubkey = pubkey;

 // x (cached) for decryption

 this.x = pubkey.np1.modPow

 (this.lambda,pubkey.n2).

 subtract(BigInteger.ONE)

 .divide(pubkey.n).

 modInverse(pubkey.n);

},

generateKeys: function(modulusbits) {

 var p, q, n, keys = {}, rng = new

 SecureRandom();

 do {

 do {

 console.log(modulusbits>>1);

 console.log(rng);

 p = new BigInteger(modulusbits>>1,

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

 1,rng);

 } while (!p.isProbablePrime(10));

 do {

 console.log(modulusbits>>1);

 console.log(rng);

 q = new BigInteger(modulusbits>>1,

 1,rng);

 } while(!q.isProbablePrime(10));

n = p.multiply(q);

} while(!(n.testBit(modulusbits - 1)) || (p.compareTo(q) == 0));

keys.pub = new paillier.publicKey(modulusbits,n);

lambda = lcm(p.subtract(BigInteger.ONE)

,q.subtract(BigInteger.ONE));

keys.sec = new paillier.privateKey(lambda, keys.pub);

return keys;

}

}

paillier.publicKey.prototype = {

 encrypt: function(m) {

 return this.randomize (this.n.multiply(m)

 .add(BigInteger.ONE).mod(this.n2));

 },

 add: function(a,b) {

 return a.multiply(b).remainder(this.n2);

 },

 mult: function(a,b) {

 return a.modPow(b, this.n2);

 },

 randomize: function(a) {

 var rn;

 if (this.rncache.length > 0) {

 rn = this.rncache.pop();

 } else {

 rn = this.getRN();

 }

 return (a.multiply(rn)).mod(this.n2);

 },

 getRN: function() {

 var r, rng = new SecureRandom();

 do {

 r = new BigInteger(this.bits,rng);

 } while(r.compareTo(this.n) >= 0);

 return r.modPow(this.n, this.n2);

 },

\ precompute: function(n) {

 for (var i = 0; i < n; i++) {

 this.rncache.push(this.getRN());

 }

 }

}

paillier.privateKey.prototype = {

 decrypt: function(c) {

 return c.modPow(this.lambda,this.pubkey.n2)

 .subtract(BigInteger.ONE).

 divide(this.pubkey.n).

 multiply(this.x).mod(this.pubkey.n);

 }

}

 In the encryption process, several steps must be done,

the functions above show each step to complete the encryption

process. These functions include encrypt, add, mult,

randomize, getRN. The encrypt function is used to convert the

initial plaintext into a chipper form with the generated key. The

add function is used to add two ciphertexts into one ciphertext.

The mult function is used for multiplication with new numbers.

Another syntax will be attached in the attachment.

V. SECURITY ANALYSIS

Security in database operations that utilize paillier

algorithms depends entirely on the security of the paillier

algorithm. The paillier algorithm is based on the Composite

Residuosity Class Problem or the problem of finding composite

residues in a class. This problem is a problem with the

complexity of the algorithm which is exponential depending on

the length of the key used. Until now, there is no efficient

algorithm to solve this problem.

Security in carrying out operations on an encrypted

database is still guaranteed as long as the paillier algorithm is

still secure. It's just that keep in mind that to ensure the paillier

algorithm remains safe is to use a long key. The longer the key

is used, the safer it will be. However, as a result,

computational operations on an encrypted database will take

longer.

VI. CONCLUSIONS AND SUGGESTIONS

The use of encryption with a paillier algorithm on the

database can increase the security of the database. The use of

paillier encryption also makes it possible to perform several

operations on the database such as read, insert, update, delete,

and addition operations. The use of a long key will increase

data security, but as a result, the time to perform operations on

the data will also be longer due to the larger size of the

ciphertext.

For further development, it is necessary to develop

ways to perform operations on data so that computation time

can be reduced.

VII. ATTACHMENT

BigInteger Functions page on generatekeys function:

var dbits;

// JavaScript engine analysis

var canary = 0xdeadbeefcafe;

var j_lm = ((canary&0xffffff)==0xefcafe);

// (public) Constructor

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

function BigInteger(a,b,c) {

 if(a != null)

 if("number" == typeof a) this.fromNumber(a,b,c);

 else if(b == null && "string" != typeof a)

this.fromString(a,256);

 else this.fromString(a,b);

}

// return new, unset BigInteger

function nbi() { return new BigInteger(null); }

// am: Compute w_j += (x*this_i), propagate carries,

// c is initial carry, returns final carry.

// c < 3*dvalue, x < 2*dvalue, this_i < dvalue

function am1(i,x,w,j,c,n) {

 while(--n >= 0) {

 var v = x*this[i++]+w[j]+c;

 c = Math.floor(v/0x4000000);

 w[j++] = v&0x3ffffff;

 }

 return c;

}

// am2 avoids a big mult-and-extract completely.

// Max digit bits should be <= 30 because we do bitwise ops

// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)

function am2(i,x,w,j,c,n) {

 var xl = x&0x7fff, xh = x>>15;

 while(--n >= 0) {

 var l = this[i]&0x7fff;

 var h = this[i++]>>15;

 var m = xh*l+h*xl;

 l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);

 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);

 w[j++] = l&0x3fffffff;

 }

 return c;

}

function am3(i,x,w,j,c,n) {

 var xl = x&0x3fff, xh = x>>14;

 while(--n >= 0) {

 var l = this[i]&0x3fff;

 var h = this[i++]>>14;

 var m = xh*l+h*xl;

 l = xl*l+((m&0x3fff)<<14)+w[j]+c;

 c = (l>>28)+(m>>14)+xh*h;

 w[j++] = l&0xfffffff;

 }

 return c;

}

if(j_lm && (navigator.appName == "Microsoft Internet

Explorer")) {

 BigInteger.prototype.am = am2;

 dbits = 30;

}

else if(j_lm && (navigator.appName != "Netscape")) {

 BigInteger.prototype.am = am1;

 dbits = 26;

}

else { // Mozilla/Netscape seems to prefer am3

 BigInteger.prototype.am = am3;

 dbits = 28;

}

BigInteger.prototype.DB = dbits;

BigInteger.prototype.DM = ((1<<dbits)-1);

BigInteger.prototype.DV = (1<<dbits);

var BI_FP = 52;

BigInteger.prototype.FV = Math.pow(2,BI_FP);

BigInteger.prototype.F1 = BI_FP-dbits;

BigInteger.prototype.F2 = 2*dbits-BI_FP;

// Digit conversions

var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";

var BI_RC = new Array();

var rr,vv;

rr = "0".charCodeAt(0);

for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;

rr = "a".charCodeAt(0);

for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

rr = "A".charCodeAt(0);

for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

function int2char(n) { return BI_RM.charAt(n); }

function intAt(s,i) {

 var c = BI_RC[s.charCodeAt(i)];

 return (c==null)?-1:c;

}

function bnpCopyTo(r) {

 for(var i = this.t-1; i >= 0; --i) r[i] = this[i];

 r.t = this.t;

 r.s = this.s;

}

// (protected) set from integer value x, -DV <= x < DV

function bnpFromInt(x) {

 this.t = 1;

 this.s = (x<0)?-1:0;

 if(x > 0) this[0] = x;

 else if(x < -1) this[0] = x+this.DV;

 else this.t = 0;

}

// return bigint initialized to value

function nbv(i) { var r = nbi(); r.fromInt(i); return r; }

// (protected) set from string and radix

function bnpFromString(s,b) {

 var k;

 if(b == 16) k = 4;

 else if(b == 8) k = 3;

 else if(b == 256) k = 8; // byte array

 else if(b == 2) k = 1;

 else if(b == 32) k = 5;

 else if(b == 4) k = 2;

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

 else { this.fromRadix(s,b); return; }

 this.t = 0;

 this.s = 0;

 var i = s.length, mi = false, sh = 0;

 while(--i >= 0) {

 var x = (k==8)?s[i]&0xff:intAt(s,i);

 if(x < 0) {

 if(s.charAt(i) == "-") mi = true;

 continue;

 }

 mi = false;

 if(sh == 0)

 this[this.t++] = x;

 else if(sh+k > this.DB) {

 this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;

 this[this.t++] = (x>>(this.DB-sh));

 }

 else

 this[this.t-1] |= x<<sh;

 sh += k;

 if(sh >= this.DB) sh -= this.DB;

 }

 if(k == 8 && (s[0]&0x80) != 0) {

 this.s = -1;

 if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;

 }

 this.clamp();

 if(mi) BigInteger.ZERO.subTo(this,this);

}

// (protected) clamp off excess high words

function bnpClamp() {

 var c = this.s&this.DM;

 while(this.t > 0 && this[this.t-1] == c) --this.t;

}

// (public) return string representation in given radix

function bnToString(b) {

 if(this.s < 0) return "-"+this.negate().toString(b);

 var k;

 if(b == 16) k = 4;

 else if(b == 8) k = 3;

 else if(b == 2) k = 1;

 else if(b == 32) k = 5;

 else if(b == 4) k = 2;

 else return this.toRadix(b);

 var km = (1<<k)-1, d, m = false, r = "", i = this.t;

 var p = this.DB-(i*this.DB)%k;

 if(i-- > 0) {

 if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r =

int2char(d); }

 while(i >= 0) {

 if(p < k) {

 d = (this[i]&((1<<p)-1))<<(k-p);

 d |= this[--i]>>(p+=this.DB-k);

 }

 else {

 d = (this[i]>>(p-=k))&km;

 if(p <= 0) { p += this.DB; --i; }

 }

 if(d > 0) m = true;

 if(m) r += int2char(d);

 }

 }

 return m?r:"0";

}

function bnNegate() { var r = nbi();

BigInteger.ZERO.subTo(this,r); return r; }

function bnAbs() { return (this.s<0)?this.negate():this; }

// (public) return + if this > a, - if this < a, 0 if equal

function bnCompareTo(a) {

 var r = this.s-a.s;

 if(r != 0) return r;

 var i = this.t;

 r = i-a.t;

 if(r != 0) return (this.s<0)?-r:r;

 while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;

 return 0;

}

// returns bit length of the integer x

function nbits(x) {

 var r = 1, t;

 if((t=x>>>16) != 0) { x = t; r += 16; }

 if((t=x>>8) != 0) { x = t; r += 8; }

 if((t=x>>4) != 0) { x = t; r += 4; }

 if((t=x>>2) != 0) { x = t; r += 2; }

 if((t=x>>1) != 0) { x = t; r += 1; }

 return r;

}

// (public) return the number of bits in "this"

function bnBitLength() {

 if(this.t <= 0) return 0;

 return this.DB*(this.t-1)+nbits(this[this.t-

1]^(this.s&this.DM));

}

// (protected) r = this << n*DB

function bnpDLShiftTo(n,r) {

 var i;

 for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];

 for(i = n-1; i >= 0; --i) r[i] = 0;

 r.t = this.t+n;

 r.s = this.s;

}

// (protected) r = this >> n*DB

function bnpDRShiftTo(n,r) {

 for(var i = n; i < this.t; ++i) r[i-n] = this[i];

 r.t = Math.max(this.t-n,0);

 r.s = this.s;

}

// (protected) r = this << n

function bnpLShiftTo(n,r) {

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

 var bs = n%this.DB;

 var cbs = this.DB-bs;

 var bm = (1<<cbs)-1;

 var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;

 for(i = this.t-1; i >= 0; --i) {

 r[i+ds+1] = (this[i]>>cbs)|c;

 c = (this[i]&bm)<<bs;

 }

 for(i = ds-1; i >= 0; --i) r[i] = 0;

 r[ds] = c;

 r.t = this.t+ds+1;

 r.s = this.s;

 r.clamp();

}

// (protected) r = this >> n

function bnpRShiftTo(n,r) {

 r.s = this.s;

 var ds = Math.floor(n/this.DB);

 if(ds >= this.t) { r.t = 0; return; }

 var bs = n%this.DB;

 var cbs = this.DB-bs;

 var bm = (1<<bs)-1;

 r[0] = this[ds]>>bs;

 for(var i = ds+1; i < this.t; ++i) {

 r[i-ds-1] |= (this[i]&bm)<<cbs;

 r[i-ds] = this[i]>>bs;

 }

 if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;

 r.t = this.t-ds;

 r.clamp();

}

// (protected) r = this - a

function bnpSubTo(a,r) {

 var i = 0, c = 0, m = Math.min(a.t,this.t);

 while(i < m) {

 c += this[i]-a[i];

 r[i++] = c&this.DM;

 c >>= this.DB;

 }

 if(a.t < this.t) {

 c -= a.s;

 while(i < this.t) {

 c += this[i];

 r[i++] = c&this.DM;

 c >>= this.DB;

 }

 c += this.s;

 }

 else {

 c += this.s;

 while(i < a.t) {

 c -= a[i];

 r[i++] = c&this.DM;

 c >>= this.DB;

 }

 c -= a.s;

 }

 r.s = (c<0)?-1:0;

 if(c < -1) r[i++] = this.DV+c;

 else if(c > 0) r[i++] = c;

 r.t = i;

 r.clamp();

}

// (protected) r = this * a, r != this,a (HAC 14.12)

// "this" should be the larger one if appropriate.

function bnpMultiplyTo(a,r) {

 var x = this.abs(), y = a.abs();

 var i = x.t;

 r.t = i+y.t;

 while(--i >= 0) r[i] = 0;

 for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);

 r.s = 0;

 r.clamp();

 if(this.s != a.s) BigInteger.ZERO.subTo(r,r);

}

// (protected) r = this^2, r != this (HAC 14.16)

function bnpSquareTo(r) {

 var x = this.abs();

 var i = r.t = 2*x.t;

 while(--i >= 0) r[i] = 0;

 for(i = 0; i < x.t-1; ++i) {

 var c = x.am(i,x[i],r,2*i,0,1);

 if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {

 r[i+x.t] -= x.DV;

 r[i+x.t+1] = 1;

 }

 }

 if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);

 r.s = 0;

 r.clamp();

}

// (protected) divide this by m, quotient and remainder to q, r

(HAC 14.20)

// r != q, this != m. q or r may be null.

function bnpDivRemTo(m,q,r) {

 var pm = m.abs();

 if(pm.t <= 0) return;

 var pt = this.abs();

 if(pt.t < pm.t) {

 if(q != null) q.fromInt(0);

 if(r != null) this.copyTo(r);

 return;

 }

 if(r == null) r = nbi();

 var y = nbi(), ts = this.s, ms = m.s;

 var nsh = this.DB-nbits(pm[pm.t-1]); // normalize

modulus

 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }

 else { pm.copyTo(y); pt.copyTo(r); }

 var ys = y.t;

 var y0 = y[ys-1];

 if(y0 == 0) return;

 var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);

 var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;

 var i = r.t, j = i-ys, t = (q==null)?nbi():q;

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

 y.dlShiftTo(j,t);

 if(r.compareTo(t) >= 0) {

 r[r.t++] = 1;

 r.subTo(t,r);

 }

 BigInteger.ONE.dlShiftTo(ys,t);

 t.subTo(y,y); // "negative" y so we can replace sub with am

later

 while(y.t < ys) y[y.t++] = 0;

 while(--j >= 0) {

 // Estimate quotient digit

 var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-

1]+e)*d2);

 if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out

 y.dlShiftTo(j,t);

 r.subTo(t,r);

 while(r[i] < --qd) r.subTo(t,r);

 }

 }

 if(q != null) {

 r.drShiftTo(ys,q);

 if(ts != ms) BigInteger.ZERO.subTo(q,q);

 }

 r.t = ys;

 r.clamp();

 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder

 if(ts < 0) BigInteger.ZERO.subTo(r,r);

}

// (public) this mod a

function bnMod(a) {

 var r = nbi();

 this.abs().divRemTo(a,null,r);

 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0)

a.subTo(r,r);

 return r;

}

// Modular reduction using "classic" algorithm

function Classic(m) { this.m = m; }

function cConvert(x) {

 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);

 else return x;

}

function cRevert(x) { return x; }

function cReduce(x) { x.divRemTo(this.m,null,x); }

function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

Classic.prototype.convert = cConvert;

Classic.prototype.revert = cRevert;

Classic.prototype.reduce = cReduce;

Classic.prototype.mulTo = cMulTo;

Classic.prototype.sqrTo = cSqrTo;

// (protected) return "-1/this % 2^DB"; useful for Mont. reduction

// justification:

// xy == 1 (mod m)

// xy = 1+km

// xy(2-xy) = (1+km)(1-km)

// x[y(2-xy)] = 1-k^2m^2

// x[y(2-xy)] == 1 (mod m^2)

// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2

function bnpInvDigit() {

 if(this.t < 1) return 0;

 var x = this[0];

 if((x&1) == 0) return 0;

 var y = x&3; // y == 1/x mod 2^2

 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4

 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8

 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod

2^16

 // last step - calculate inverse mod DV directly;

 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit

ints

 y = (y*(2-x*y%this.DV))%this.DV; // y ==

1/x mod 2^dbits

 // we really want the negative inverse, and -DV < y < DV

 return (y>0)?this.DV-y:-y;

}

// Montgomery reduction

function Montgomery(m) {

 this.m = m;

 this.mp = m.invDigit();

 this.mpl = this.mp&0x7fff;

 this.mph = this.mp>>15;

 this.um = (1<<(m.DB-15))-1;

 this.mt2 = 2*m.t;

}

// xR mod m

function montConvert(x) {

 var r = nbi();

 x.abs().dlShiftTo(this.m.t,r);

 r.divRemTo(this.m,null,r);

 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0)

this.m.subTo(r,r);

 return r;

}

// x/R mod m

function montRevert(x) {

 var r = nbi();

 x.copyTo(r);

 this.reduce(r);

 return r;

}

// x = x/R mod m (HAC 14.32)

function montReduce(x) {

 while(x.t <= this.mt2) // pad x so am has enough room later

 x[x.t++] = 0;

 for(var i = 0; i < this.m.t; ++i) {

 // faster way of calculating u0 = x[i]*mp mod DV

 var j = x[i]&0x7fff;

 var u0 =

(j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))

&x.DM;

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

 // use am to combine the multiply-shift-add into one call

 j = i+this.m.t;

 x[j] += this.m.am(0,u0,x,i,0,this.m.t);

 // propagate carry

 while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }

 }

 x.clamp();

 x.drShiftTo(this.m.t,x);

 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);

}

// r = "x^2/R mod m"; x != r

function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

// r = "xy/R mod m"; x,y != r

function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

Montgomery.prototype.convert = montConvert;

Montgomery.prototype.revert = montRevert;

Montgomery.prototype.reduce = montReduce;

Montgomery.prototype.mulTo = montMulTo;

Montgomery.prototype.sqrTo = montSqrTo;

// (protected) true iff this is even

function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) ==

0; }

// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC

14.79)

function bnpExp(e,z) {

 if(e > 0xffffffff || e < 1) return BigInteger.ONE;

 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;

 g.copyTo(r);

 while(--i >= 0) {

 z.sqrTo(r,r2);

 if((e&(1<<i)) > 0) z.mulTo(r2,g,r);

 else { var t = r; r = r2; r2 = t; }

 }

 return z.revert(r);

}

// (public) this^e % m, 0 <= e < 2^32

function bnModPowInt(e,m) {

 var z;

 if(e < 256 || m.isEven()) z = new Classic(m); else z = new

Montgomery(m);

 return this.exp(e,z);

}

VIDEO LINK AT YOUTUBE

https://youtu.be/QmJbAuV7a-A

ACKNOWLEDGMENT

The program for conducting experiments can be seen at

https://github.com/tafiaalifianty/Paillier

REFERENCES

[1] Paillier Pascal, "Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes", Gemplus Card International, 1999

[2] Morris Lieam, “Analysis of Partial and Fully Homomorphic
Encryption”, Rochester Institute of Technology, 2013

[3] Silberschatz Abramam dkk, “Database System Concept 6th edition”,
McGraw Hill, 2011.

[4] Wahana Komputer, “Panduan Belajar MySQL Database Server”,

MediaKita, Indonesia, 2010.

[5] Antony Pranata, ”Seri Pemrograman Internet : Panduan Pemrograman
JavaScript (sampai dengan JavaScript 1.2)”, Penerbit Andi, Indonesia,
2011

[6] Potzelsberger, “KV Web Security: Application of Homomorphic
Encryption”. 2013

http://www.fim.uni-
linz.ac.at/lva/Web_Security/Abgaben/Poetzelsberger-Homomorphic.pdf

. Diakses pada 7 Mei 2021

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 25 Mei 2021

Tafia Alifianty Dinita Putri

18218038

